圆的面积的计算(圆的面积百度百科)
圆的面积的计算(圆的面积百度百科),本文通过数据整理汇集了圆的面积的计算(圆的面积百度百科)相关信息,下面一起看看。
#本文目录一览1、圆的面积公式是什么?2、圆的面积公式是什么?3、圆的面积怎么求?4、圆的面积怎样计算?5、圆的面积是多少?6、圆的面积怎么算?1圆的面积公式是什么?圆的面积等于半径的平方乘以3.14,半径等于直径的二分之一。
圆的面积公式为:S=πr2,S=π(d/2)2,(d为直径,r为半径,π是圆周率,通常取3.14),圆面积公式的是由古代数学家不断推导出来的。
我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。
古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。
古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。
16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr2。
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R=nπR/180。(θ为圆心角)(R为扇形半径)
6、扇形面积S=nπR2/360=LR/2。(L为扇形的弧长)
7、圆锥底面半径r=nR/360。(r为底面半径)(n为圆心角)
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr2。
2圆的面积公式是什么?圆的面积公式是S=πr2
公式简介
公式内容为圆周率*半径的平方,用字母可以表示为:S=πr2或S=π*(d/2)2。(π表示圆周率(3.1415926……),r表示半径,d表示直径)。
公式由来
开普勒是德国天文学家、物理学家、数学家,现代实验光学奠基人。他当过数学老师,对求面积的问题非常感兴趣,曾进行过深入的研究。
他想,古代数学家用分割的***去求圆面积,所得到的结果都是近似值。为了提高近似程度,他们不断地增加分割的次数。但是,不管分割多少次,只要是有限次,所求出来的总是圆面积的近似值。要想求出圆面积的精确值,必须分割无穷多次,把圆分成无穷多等分才行。
开普勒运用无穷分割法,大胆地把圆分割成无穷多个小扇形,并果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求圆面积的基础上,向前迈出了重要的一步。
1615年,他将自己创造的这种求圆面积的新***,发表在《葡萄酒桶的立体几何》一书中。数学家们高度评价开普勒的工作,称赞这本书是人们创造求圆面积和体积新***的灵感源泉。
3圆的面积怎么求?S=πr_
圆的面积公式为:S=πr_。其中S表示圆的面积;π为圆周率,它是一个无限不循环小数,一般无特殊要求的情况下,计算中π≈3.14;r是圆的半径。
如,一个圆的半径为2厘米,那么这个圆的面积则为3.14乘以2的平方,经计算,该圆的面积为12.56平方厘米。开普勒也仿照切西瓜的***,把圆分割成许多小扇形;
不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πr,这就是我们所熟悉的圆周长公式。
4圆的面积怎样计算?S=πr?或S=π*(d/2)?。
r:圆的半径。d:圆的直径。π:圆周率,是无限不循环小数,一般取值3.14。
约翰尼斯·开普勒运用无穷分割法,求出了许多图形的面积。1615年,他将自己创造的这种求圆面积的新***,发表在《葡萄酒桶的立体几何》一书中。
他把圆分割成无穷多个小扇形,并果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求圆面积的基础上,向前迈出了重要的一步。
5圆的面积是多少?圆的面积公式是:圆周率乘以半径的平方,用字母可以表示为:S=πr2或S=π*(d/2)2。(s表示圆的面积,π表示圆周率3.1415926……,r表示半径,d表示直径)?
公式推导:圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于π乘圆的直径(D)等于圆的周长(C),C=πd。而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π,S=πr2。
1、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方。
2、当长方形、正方形、圆的周长相等时,圆面积更大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
6圆的面积怎么算?圆的面积公式:
。
圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于
π乘圆的直径(D)等于圆的周长(C),C=πd。
而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。把圆平均分成若干份,可以拼成一个近似的长方形。
长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π,
。
扩展资料:
圆周率的几何算法
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212
年)
开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71
和22/7,
并取它们的平均值3.141851
为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
参考资料来源:搜狗百科-圆面积
参考资料来源:搜狗百科-圆周率
好了,关于圆面积和圆面积计算***最简单的的问题到这里结束啦,希望可以解决您的问题哈!
更多圆的面积的计算(圆的面积百度百科)相关信息请关注本站。